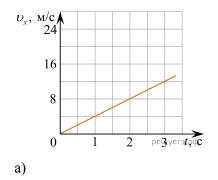
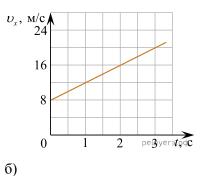
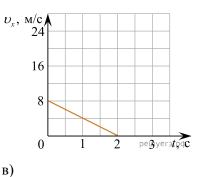
Централизованное тестирование по физике, 2017

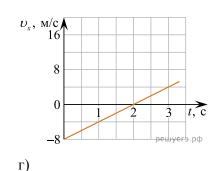
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

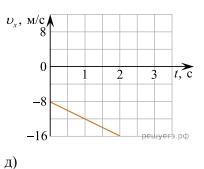
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


1. Математический маятник совершает гармонические колебания. Его ускорение в СИ измеряется в:


1)
$$M/c$$
 2) $1/c$ 3) M^2/c 4) M/c^2 5) M^2/c^2


2. Во время испытания автомобиля водитель поддерживал постоянную скорость, значение которой указывает стрелка спидометра, изображённого на рисунке. Путь s=20 км автомобиль проехал за промежуток времени Δt , равный:




3. Проекция скорости движения тела v_x на ось Ox зависит от времени t согласно закону $v_x = A + C$ Bt, где A = 8 м/с, B = 4 м/с². Этой зависимости соответствует график (см. рис.), обозначенный буквой:

1) a 2) б 3) B **4)** Γ д

4. Материальная точка движется равномерно по окружности, радиус которой R = 30 см. Если за промежуток времени $\Delta t = 3,0$ с радиус-вектор, проведенный из центра окружности к материальной точке, повернулся на угол $\Delta \phi = 15$ рад, то модуль линейной скорости υ материальной точки равен:

- 1) 0.5 m/c
- 2) 1.0 m/c
- 3) 1,5 m/c
- 4) 2 m/c5) 2.5 m/c

5. К некоторому телу приложены силы $\overrightarrow{F_1}$ и $\overrightarrow{F_2}$, лежащие в плоскости рисунка (см. рис. 1). На рисунке 2 направление ускорения \overrightarrow{d} этого тела обозначено цифрой:

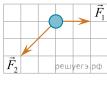


Рис. 1

Рис. 2

4) 4

- 1) 1 2) 2
- 3)3
- 5)5

6. Шар объемом V = 15,0 дм³, имеющий внутреннюю полость объёмом $V_0 = 14,0 \text{ дм}^3$, плавает в воде $\rho_1 = 1,0 \cdot 10^3 \text{ кг/м}^3$, погрузившись в нее ровно наполовину. Если массой воздуха в полости шара пренебречь, то плотность ρ_2 вещества, из которого изготовлен шар, равна:

Примечание. Объём V шара равен сумме объёма полости V_0 и объёма вещества, из которого изготовлен шар.

- 1) $2.5 \cdot 10^3 \, \text{kg/m}^3$

- 2) $4.0 \cdot 10^3 \text{ kg/m}^3$ 3) $5.5 \cdot 10^3 \text{ kg/m}^3$ 4) $7.5 \cdot 10^3 \text{ kg/m}^3$ 5) $8.5 \cdot 10^3 \text{ kg/m}^3$

7. Газ, начальная температура которого T_1 = 300 °C, нагрели на $\Delta t = 300$ К. Конечная температура T_2 газа равна:

- 1) 54 K
- 2) 327 K
- 3) 600 K
- 5) 1146 K

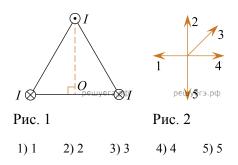
4) 873 K

8. Сосуд вместимостью V=1,0 дм 3 полностью заполнен водой ($\rho=1,0$ г/см $^3, M=18$ г/моль). Число N молекул воды в сосуде равно:

1) $1,8 \cdot 10^{25}$ 2) $2,3 \cdot 10^{25}$ 3) $3,3 \cdot 10^{25}$ 4) $3,6 \cdot 10^{25}$ 5) $6,0 \cdot 10^{25}$

- **9.** С идеальным газом, количество вещества которого постоянно, проводят изотермический процесс. Если объём газа увеличивается, то:
 - 1) к газу подводят теплоту, давление газа увеличивается 2) к газу подводят теплоту, давление газа уменьшается
 - 3) теплота не подводится к газу и не отводится от него, давление газа увеличивается
 - 4) теплота не подводится к газу и не отводится от него, давление газа уменьшается
 - 5) теплота отводится от газа, давление газа уменьшается
 - 10. Установите соответствие между прибором и физической величиной, которую он измеряет:

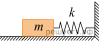
	А. Амперметр		1) сила тока			
	Б. Барометр		2) электрическое напряжение			
			3) атмосферное давление			
1) A	.1Б2	2) А1Б3	3) А2Б1	4) А2Б3	5) A	3Б2


11. Электроёмкость плоского воздушного конденсатора $C_1 = 0,6$ нФ. Если пространство между обкладками конденсатора полностью заполнить бумагой, диэлектрическая проницаемость которого $\varepsilon = 3$, то электроёмкость C_2 конденсатора будет равна:

1) 0,1 нФ 2) 0,2 нФ 3) 0,3 нФ 4) 1,2 нФ 5) 1,8 нФ

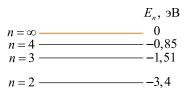
12. Если сила тока в проводнике I = 3,6 мA, то за промежуток времени $\Delta t = 4,0$ с через поперечное сечение проводника пройдут электроны, число N которых равно:

1) $2,0 \cdot 10^{16}$ 2) $4,0 \cdot 10^{16}$ 3) $9,0 \cdot 10^{16}$ 4) $1,0 \cdot 10^{17}$ 5) $2,0 \cdot 10^{17}$


13. Два длинных тонких прямолинейных проводника, сила тока в которых одинакова, расположены в воздухе параллельно друг другу так, что центры их поперечных сечений находятся в вершинах прямоугольного равнобедренного треугольника (см. рис. 1). Направление вектора индукции В результирующего магнитного поля, созданного этими токами в точке O, на рисунке 2 обозначено цифрой:

14. Прямоугольная рамка со сторонами a=40 мм, b=20 мм, изготовленная из тонкой проволоки, расположена в однородном магнитном поле, линии индукции которого перпендикулярны плоскости рамки. Модуль индукции магнитного поля равномерно уменьшился от $B_1=500$ мТл до $B_2=300$ мТл в течение промежутка времени Δt . Если ЭДС индукции в рамке $\epsilon=3,2$ мВ, то промежуток времени Δt равен:

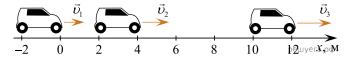
1) 55 Mc 2) 50 Mc 3) 45 Mc 4) 40 Mc 5) 35 Mc


15. Груз, находящийся на гладкой горизонтальной поверхности и прикреплённый к невесомой пружине жёсткостью $k=20\,$ Н/м (см. рис.), совершает гармонические колебания с амплитудой $A=10\,$ см. Если модуль максимальной скорости груза $v_{\rm max}=2.0\,$ м/с то масса m груза равна:

1) 20 г 2) 30 г 3) 40 г 4) 50 г 5) 60 г

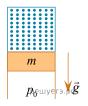
16. На дифракционную решётку нормально падает параллельный пучок монохроматического света с длиной волны $\lambda = 400$ нм. Если дифракционный максимум второго порядка наблюдается под углом $\theta = 30^{\circ}$ к нормали, то каждый миллиметр решетки содержит число N штрихов, равное:

17. На диаграмме изображены энергетические уровни атома водорода (см. рис.). Если атом водорода перешел с первого (n=1) энергетического уровня на третий (n=3), то энергия атома:

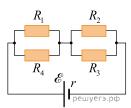


$$n=1$$
 — peny $43,61$

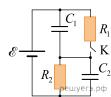
18. Точечный источник света находится на расстоянии $l_1 = 60$ см от плоского зеркала. Если расстояние между источником и его изображением в зеркале уменьшится на $|\bigstar\Delta L|=20$ см, то расстояние l_2 между источником света и зеркалом стало равным:



- **19.** С башни в горизонтальном направлении бросили камень, который упал на землю на расстоянии s=14,4 м от основания башни. Если непосредственно перед падением на землю скорость камня была направлена под углом $\alpha=45^\circ$ к горизонту, то модуль начальной скорости υ_0 камня был равен ... $\mathbf{m/c}$.
- **20.** Кинематический закон движения тела вдоль оси Ox имеет вид $x(t) = A + Bt + Ct^2$, где A = 4.0 м, B = 2.0 м/с, C = -0.8 м/с². Если модуль результирующей всех сил, приложенных к телу, F = 64 H, то масса тела m равна ... кг.
- **21.** Тело свободно падает без начальной скорости с высоты h=20 м над поверхностью Земли. Если масса тела m=200 г, то на высоте $h_1=8,0$ м кинетическая энергия $E_{\rm K}$ тела равна ... Дж.
- **22.** На рисунке представлены фотографии электромобиля, сделанные через равные промежутки времени $\Delta t = 2.0$ с. Если электромобиль двигался прямолинейно и равноускоренно, то в момент времени, когда был сделан третий снимок, проекция скорости движения электромобиля v_x на ось Ox была равна ... км/ч.



- **23.** При температуре $t_1 = 27$ °C средняя квадратичная скорость поступательного движения молекул идеального газа $\langle v_{\text{кв1}} \rangle = 354$ м/с. При температуре $t_2 = 227$ °C молекулы этого газа имеют среднюю квадратичную скорость $\langle v_{\text{кв2}} \rangle$, равную ... м/с. Ответ округлите до целого числа.
- **24.** В теплоизолированный сосуд, содержащий $m_1 = 50$ г льда ($\lambda = 330$ кДж/кг) при температуре плавления $t_1 = 0$ °C, влили воду ($c = 4.2 \ 10^3$ Дж/(кг °C)) массой $m_2 = 33$ г при температуре $t_2 = 50$ °C. После установления теплового равновесия масса m_3 льда в сосуде станет равной ... г.


25. В вертикальном цилиндрическом сосуде, закрытом снизу легкоподвижным поршнем массой m=10 кг и площадью поперечного сечения S=40 см², содержится идеальный одноатомный газ. Сосуд находится в воздухе, атмосферное давление которого $p_0=100$ кПа. Если при изобарном нагревании газа поршень переместился на расстояние $|\Delta h|=10$ см, то количество теплоты Q, сообщённое газу, равно ... Дж.

- **26.** Из ядерного реактора извлекли образец, содержащий радиоактивный изотоп с периодом полураспада $T_{1/2}=8.0$ суток. Если начальная масса изотопа, содержащегося в образце, $m_0=880$ мг, то через промежуток времени $\Delta t=32$ суток масса m изотопа в образце будет равна ... мг.
- **27.** Два находящихся в вакууме маленьких заряженных шарика одинаковой массы, заряды которых $q_1 = q_2 = 30$ нКл, подвешены в одной точке на лёгких шёлковых нитях одинаковой длины l = 15 см. Если шарики разошлись так, что угол между нитями составил $\alpha = 90^{\circ}$, то масса m каждого шарика равна ... **мг**.
- **28.** Участок цепи, состоящий из четырех резисторов (см. рис.), сопротивления которых $R_1=1,0$ Ом, $R_2=2,0$ Ом, $R_3=3,0$ Ом и $R_4=4,0$ Ом, подключен к источнику тока с ЭДС $\epsilon=20,0$ В и внутренним сопротивлением r=2,0 Ом. Тепловая мощность P_3 , выделяемая в резисторе R_3 , равна ... **Вт**.

- **29.** Короткий световой импульс, испущенный лазерным дальномером, отразился от объекта и был зарегистрирован этим же дальномером через промежуток времени $\Delta t = 0,880$ мкс после испускания. Расстояние s от дальномера до объекта равно ... **м**.
- **30.** В электрической цепи, схема которой представлена на рисунке, ёмкости конденсаторов $C_1=400$ мкФ, $C_2=300$ мкФ, ЭДС источника тока $\mathscr{E}=30$ В. Сопротивление резистора R_2 в два раза больше сопротивления резистора R_1 , то есть $R_2=2R_1$. В начальный момент времени ключ K замкнут и через резисторы протекает постоянный ток. Если внутреннее сопротивление источника тока пренебрежимо мало, то после размыкания ключа K в резисторе R_2 выделится количество теплоты Q_2 , равное ... мДж.

